Mindblown: a blog about philosophy.

  • The muscle proteins

    The total amount of muscle proteins in mammals, including humans, exceeds that of any other protein. About 40 percent of the body weight of a healthy human adult weighing about 70 kilograms (150 pounds) is muscle, which is composed of about 20 percent muscle protein. Thus, the human body contains about 5 to 6 kilograms (11 to 13 pounds) of muscle…

  • Keratin

    Keratin, the structural protein of epithelial cells in the outermost layers of the skin, has been isolated from hair, nails, hoofs, and feathers. Keratin is completely insoluble in cold or hot water; it is not attacked by proteolytic enzymes (i.e., enzymes that break apart, or lyse, protein molecules), and therefore cannot replace proteins in the diet. The…

  • Structural proteins

    Scleroproteins Collagen Collagen is the structural protein of bones, tendons, ligaments, and skin. For many years collagen was considered to be insoluble in water. Part of the collagen of calf skin, however, can be extracted with citrate buffer at pH 3.7. A precursor of collagen called procollagen is converted in the body into collagen. Procollagen has a molecular weight of 120,000. Cleavage of one…

  • Special structure and function of proteins

    Despite its weaknesses, a functional classification is used here in order to demonstrate, whenever possible, the correlation between the structure and function of a protein. The structural, fibrous proteins are presented first, because their structure is simpler than that of the globular proteins and more clearly related to their function, which is the maintenance of…

  • Classification by biological functions

    In view of the unsatisfactory state of the old classification, it is preferable to classify the proteins according to their biological function. Such a classification is far from ideal, however, because one protein can have more than one function. The contractile protein myosin, for example, also acts as an ATPase (adenosine triphosphatase), an enzyme that hydrolyzes adenosine triphosphate (removes…

  • Classification of proteins

    Classification by solubility After two German chemists, Emil Fischer and Franz Hofmeister, independently stated in 1902 that proteins are essentially polypeptides consisting of many amino acids, an attempt was made to classify proteins according to their chemical and physical properties, because the biological function of proteins had not yet been established. (The protein character of enzymes was not proved until…

  • Protein denaturation

    When a solution of a protein is boiled, the protein frequently becomes insoluble—i.e., it is denatured—and remains insoluble even when the solution is cooled. The denaturation of the proteins of egg white by heat—as when boiling an egg—is an example of irreversible denaturation. The denatured protein has the same primary structure as the original, or native, protein.…

  • Association of protein subunits

    Many proteins with molecular weights of more than 50,000 occur in aqueous solutions as complexes: dimers, tetramers, and higher polymers—i.e., as chains of two, four, or more repeating basic structural units. The subunits, which are called monomers or protomers, usually are present as an even number. Less than 10 percent of the polymers have been found to…

  • Chemical reactivity of protein

    Information on the internal structure of proteins can be obtained with chemical methods that reveal whether certain groups are present on the surface of the protein molecule and thus able to react or whether they are buried inside the closely folded peptide chains and thus are unable to react. The chemical reagents used in such investigations must be mild…

  • Spectrophotometric behaviour

    Spectrophotometry of protein solutions (the measurement of the degree of absorbance of light by a protein within a specified wavelength) is useful within the range of visible light only with proteins that contain coloured prosthetic groups (the nonprotein components). Examples of such proteins include the red heme proteins of the blood, the purple pigments of the retina of the eye,…

Got any book recommendations?