Category: Proteins

  • Association of protein subunits

    Many proteins with molecular weights of more than 50,000 occur in aqueous solutions as complexes: dimers, tetramers, and higher polymers—i.e., as chains of two, four, or more repeating basic structural units. The subunits, which are called monomers or protomers, usually are present as an even number. Less than 10 percent of the polymers have been found to…

  • Chemical reactivity of protein

    Information on the internal structure of proteins can be obtained with chemical methods that reveal whether certain groups are present on the surface of the protein molecule and thus able to react or whether they are buried inside the closely folded peptide chains and thus are unable to react. The chemical reagents used in such investigations must be mild…

  • Spectrophotometric behaviour

    Spectrophotometry of protein solutions (the measurement of the degree of absorbance of light by a protein within a specified wavelength) is useful within the range of visible light only with proteins that contain coloured prosthetic groups (the nonprotein components). Examples of such proteins include the red heme proteins of the blood, the purple pigments of the retina of the eye,…

  • Other approaches to the determination of protein structure

    None of the several other physical methods that have been used to obtain information on the secondary and tertiary structure of proteins provides as much direct information as the X-ray diffraction technique. Most of the techniques, however, are much simpler than X-ray diffraction, which requires, for the resolution of the structure of one protein, many…

  • Conformation of globular proteins

    Results of X-ray diffraction studies Most knowledge concerning secondary and tertiary structure of globular proteins has been obtained by the examination of their crystals using X-ray diffraction. In this technique, X-rays are allowed to strike the crystal; the X-rays are diffracted by the crystal and impinge on a photographic plate, forming a pattern of spots. The measured intensity…

  • Electrophoresis

    The positively and negatively charged side chains of proteins cause them to behave like amino acids in an electrical field; that is, they migrate during electrophoresis at low pH values to the cathode (negative terminal) and at high pH values to the anode (positive terminal). The isoelectric point, the pH value at which the protein molecule does not migrate,…

  • Electrometric titration

    When measured volumes of hydrochloric acid are added to a solution of protein in salt-free water, the pH decreases in proportion to the amount of hydrogen ions added until it is about 4. Further addition of acid causes much less decrease in pH because the protein acts as a buffer at pH values of 3 to 4. The reaction that takes…

  • Electrochemistry of proteins

    Because the α-amino group and α-carboxyl group of amino acids are converted into peptide bonds in the protein molecule, there is only one α-amino group (at the N terminus) and one α-carboxyl group (at the C terminus) in a given protein molecule. The electrochemical character of a protein is affected very little by these two groups. Of…

  • Hydration of protiens

    When dry proteins are exposed to air of high water content, they rapidly bind water up to a maximum quantity, which differs for different proteins; usually it is 10 to 20 percent of the weight of the protein. The hydrophilic groups of a protein are chiefly the positively charged groups in the side chains of lysine and arginine and…

  • The shape of protein molecules

    In the technique of X-ray diffraction, the X-rays are allowed to strike a protein crystal. The X-rays, diffracted (bent) by the crystal, impinge on a photographic plate, forming a pattern of spots. This method reveals that peptide chains can assume very complicated, apparently irregular shapes. Two extremes in shape include the closely folded structure of the globular proteins and the elongated,…