Structural arrangements and properties

Stereoisomerism

Studies by German chemist Emil Fischer in the late 19th century showed that carbohydrates, such as fructose and glucose, with the same molecular formulas but with different structural arrangements and properties (i.e., isomers) can be formed by relatively simple variations of their spatial, or geometric, arrangements. This type of isomerism, which is called stereoisomerism, exists in all biological systems. Among carbohydrates, the simplest example is provided by the three-carbon aldose sugar glyceraldehyde. There is no way by which the structures of the two isomers of glyceraldehyde, which can be distinguished by the so-called Fischer projection formulas, can be made identical, excluding breaking and reforming the linkages, or bonds, of the hydrogen (―H) and hydroxyl (―OH) groups attached to the carbon at position 2. The isomers are, in fact, mirror images akin to right and left hands; the term enantiomorphism is frequently employed for such isomerism. The chemical and physical properties of enantiomers are identical except for the property of optical rotation.

Optical rotation is the rotation of the plane of polarized light. Polarized light is light that has been separated into two beams that vibrate at right angles to each other; solutions of substances that rotate the plane of polarization are said to be optically active, and the degree of rotation is called the optical rotation of the solution. In the case of the isomers of glyceraldehyde, the magnitudes of the optical rotation are the same, but the direction in which the light is rotated—generally designated as plus, or d for dextrorotatory (to the right), or as minus, or l for levorotatory (to the left)—is opposite; i.e., a solution of D-(d)-glyceraldehyde causes the plane of polarized light to rotate to the right, and a solution of L-(l)-glyceraldehyde rotates the plane of polarized light to the left. Fischer projection formulas for the two isomers of glyceraldehyde are given below.

Carbohydrates. Formulas for the two isomers of glyceraldehyde: D-(d)-glyceraldehyde and L-(l)-glyceraldehyde

Posted

in

by

Tags:

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *